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ABSTRACT 

 
In Western music culture instruments have been developed 
according to unique instrument acoustical features based on 
types of excitation, resonance, and radiation. These include 
the woodwind, brass, bowed and plucked string, and 
percussion families of instruments. On the other hand, 
instrument performance depends on musical training, and 
music listening depends on perception of instrument output. 
Since musical signals are easier to understand in the 
frequency domain than the time domain, much effort has 
been made to perform spectral analysis and extract salient 
parameters, such as spectral centroid changes, in order to 
create simplified synthesis models for musical instrument 
sound synthesis. Moreover, perceptual tests have been made 
to determine the relative importance of various parameters, 
such as spectral centroid variation, spectral incoherence, and 
spectral irregularity. It turns out that importance of particular 
parameters depend on both their strengths within musical 
sounds as well as the robustness of their effect on 
perception. Methods that the author and his colleagues have 
used to explore timbre perception are: 1) discrimination of 
parameter reduction or elimination; 2) dissimilarity 
judgments together with multidimensional scaling; 3) 
informal listening to sound morphing examples. 
Ramifications of this work for sound synthesis and timbre 
transposition will be discussed and demonstrated. 
 

1.  INTRODUCTION 
 
The principal long-term goal of this study is to achieve a 
synthesis system where a minimal set of independent but 
perceptually meaningful parameters are used to control and 
synthesize musically useful sounds, including sounds of 
traditional musical instruments. Basic steps for 
accomplishing this goal are a) using spectral analysis to 
obtain static and time-varying parameters; b) building 
synthesis models to utilize these parameters; c) conducting 
formal listening tests on single sounds to test the efficacy of 
the models; and d) conducting informal listening tests using 
synthesis of extended musical passages.  

Although it might seem that this goal could be achieved in 
a few weeks or months, in practice, timbre has been studied 
using a series of less ambitious steps. Typically the first step 
is to select a group of musical sounds to study. The 
parameters to be identified from the sounds are first of all 
the time-varying amplitudes and frequencies obtained from a 
spectral analysis. Then, more detailed, possibly perceptually 
important parameters can be inferred such as attack and 
decay times, spectral envelope features (such as spectral 
centroid spectral irregularity, and spectral flux), vibrato 
characteristics, and inharmonicity. 

Conducting a formal listening test for timbre requires the 
following steps: 

 
• Stimuli preparation 
• Psychoacoustic testing (the actual listening test) 
• Data processing and presentation 
• Interpretation of results 

 
Either synthetic or recorded acoustic (“real”) sounds can be 

used as stimuli, but in either case they should be normalized to 
eliminate sonic attributes that are not part of timbre, namely, 
loudness, pitch, and duration. The latter two are not a problem 
for synthetic sounds (sounds consisting solely of harmonically 
related frequencies), but for either sound type loudness 
equalization through gain factor adjustment must be achieved by 
additional loudness testing or a special program [1] or 
alternatively by randomizing the levels [2]. For pitch 
normalization of harmonic sounds it is generally acceptable to 
make certain that the fundamental frequencies are the same.  
Duration is a bit more complicated, but a method is given in [3], 
where attack and decay structures are retained and the total 
duration is reduced to a standard 2 s. 

If a test is to only compare different acoustic sounds, as in the 
case of a dissimilarity test, no further stimuli modifications may 
be necessary. Physical (spectral) differences between sounds 
can be measured in terms of specific parameters and correlated 
with the measured perceptual differences.  However, for a 
discrimination test the experimenter will often want to modify 
specific acoustic parameters of the sounds and then examine 
how discrimination ability varies with each parameter that is 
changed or, in more detail, the amount of change of each 
parameter. 

Important questions are: 1) What specific parameters should 
be varied? 2) Why do we choose these particular parameters? 
How do we measure them?  How do we vary them? For the 
studies reviewed in this paper, the specific parameters are 
spectral irregularity, spectral flux, spectral centroid variation, 
amplitude and frequency microvariations, and inharmonicity.  
Reasons for choosing these parameters are discussed in the 
timbre literature. (See [4] and [5] for reviews.) Methods for 
measuring and varying them are given in [3] and [6]. 

Also, it should be remarked that two specific parameters, 
average spectral centroid and attack time have proved to be so 
salient that they are sometimes factored out (normalized) of the 
stimuli. Such was the case with [6] and [7] and is a method 
utilized in the second study covered in this paper. 

  Preparation of a psychoacoustic test requires the selection of 
listener subjects and the design of the test. Chosen listeners are 
generally young people with good hearing and divided between 
those with extensive and those with meager musical experience. 
The two formal tests described in this review paper use either 
timbre discrimination or dissimilarity judgments. With 
discrimination the subjects are generally asked to judge whether 
pairs of sounds are same or different. With a dissimilarity task 
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they are asked to judge the amount of difference on a scale 
of say 0 to 10. 

Once a test is completed and the data is collected, the data 
can be processed in various ways. Discrimination averages 
can be simply presented or graphs of discrimination vs. a 
particular parameter can be illustrated.  In the case of 
dissimilarity judgments, the method of multidimensional 
scaling (MDS) is commonly used to display the positions of 
the sound stimuli in a 2- or 3-dimensional space [8] [9]. To 
show trends within the space the dimensions can be 
correlated with  parametric measures of various 
spectrotemporal parameters of the stimuli. 

Finally, an interpretation of the data is usually given.  One 
of the biggest problems is estimating the scope of validity of 
the results.  Scope is usually limited because it is difficult to 
design tests that cover a wide range of cases and can still be 
conducted over a reasonable time period. 

2.  THREE TIMBRE STUDIES 
 
Three studies will be described, a 1999 timbre 
discrimination study, a 2006 timbre dissimilarity judgment 
study with MDS solution, and a 2008 timbre transposition 
study. 
 
2.1  Timbre discrimination study (1999) 
 
The objective of this study [3] was to investigate the relative 
importance of  some different spectrotemporal parameters by 
simplifying musical sounds with respect to these parameters.  
The stimuli prototypes (reference sounds) consisted of tones 
performed on seven different instruments: clarinet, flute, 
oboe, trumpet, violin, harpsichord, and marimba at pitch Eb

4 
(311 Hz). Loudnesses were equalized using a brief test, and 
durations were equalized to 2 s using a method described in 
[3]. The sound signals were analyzed using a pitch-
synchronous short-time Fourier transform program [10], and 
the resulting partial amplitude and frequency data was 
simplified as follows: 
 
1)  partial amplitude-vs.-time envelopes smoothed 
2)  spectral envelope smoothed  (irregularity reduced) 
3)  spectral flux (aka incoherence) eliminated 
4)  partial frequency-vs.-time envelopes smoothed 
5)  partial frequencies locked to time-varying harmonic 
6)  partial frequencies flattened to harmonic 
 
and then the sounds were resynthesized to the time domain 
by additive synthesis. 

Note that the word partial is used here instead of 
harmonic because even though the frequencies of these 
tones are close to harmonic, departures from harmonicity are 
possible. 

Although there was considerable variation with 
instrument (see [3] for details), the discrimination results 
averaged over the seven instruments were: 

 
a) spectral envelope smoothed 96% 
b) spectral flux eliminated 91% 
c) frequencies flattened 71% 
d) frequency envelopes smoothed 70% 
e) frequencies locked harmonically 69% 
f)  amplitude envelopes smoothed 66%  
 

An interpretation of these results is that the spectral 
parameters irregularity (i.e., jaggedness) and flux (change of 

spectrum shape over time) are, for this set of instruments, most 
salient.  Smoothing the amplitude and frequency envelopes 
(using a 10 Hz cutoff low-pass filter) eliminates fine grained 
temporal detail, but this elimination is relatively unnoticeable. 
So is locking the frequencies harmonically or removing any 
trace of frequency variation. 

However, when an error metric (similar to those discussed in 
[7]) was constructed based on the difference between reference 
and modified partial amplitudes, and a regression line was 
constructed to fit discrimination (given in terms of d´) against 
the log of this error, it was found that the regression straight line 
explained 77% of the discrimination variance (88% if one 
outlier point was removed). Since the modifications done could 
also change the spectral centroid, d´ was also plotted against the 
log of normalized spectral centroid difference between the 
reference and modified sounds. In this case a regression straight 
line explained only 54% of variance, but when the spectral 
centroid difference was combined into a total formula with the 
partial amplitude error metric, 83% of variance was explained 
(with no outliers removed). 

A final interpretation from these results is that, yes, spectral 
irregularity and flux are important specific parameters, but 
discrimination is also strongly correlated with a total metric 
difference between two sounds which takes into account all of 
the frequency components of the sounds.   

 
2.2 Timbre dissimilarity study (2006) 
 
With this study, originally presented as a talk in 2006 [11], 
subjects had the task of judging the dissimilarity between 
musical sounds. The original stimuli consisted of tones 
performed on ten sustained-tone instruments: bassoon, cello, 
clarinet, flute, horn, oboe, recorder, alto sax, trumpet, and 
violin.  Two types of tones were constructed from these: 
dynamic (with flux) and static (without flux). The tones were 
also normalized with respect to pitch (F0 = 311 Hz), attack time 
(.05 s), decay time (.05 s static, .15 s dynamic), total duration 
(0.5 s static, 2.0 s dynamic), loudness [1], and average 
normalized spectral centroid (3.7).  Average centroids were 
normalized by applying a filter with response kp to each 
harmonic k’s amplitude, where p was varied to achieve the 
desired centroid value, as described in [6]. 

The listening test employed ten musically experienced 
subjects to judge dissimilarity between tone pairs using a 
method of triadic comparison [12]. While dissimilarity scores 
theoretically could vary from 0 to 17, actual scores varied from 
about 4 to 13. The scores were placed in a 10×10 dissimilarity 
matrix which was processed by two different classical MDS 
programs (SPSS and Matlab).  For the static tones, only 2D 
solutions were made, whereas both 2D and 3D solutions were 
made for the dynamic tones.  Stresses (average normalized 
difference between inter-timbre distances given by the 
dissimilarity matrix and those given by the MDS solution) for 
the 2D solutions were both 0.12 for the static case and 0.15–
0.17 for the dynamic case; for the dynamic 3D solutions they 
were both 0.095. 

(It was somewhat of a surprise for this author to discover the 
degree to which the distances between pairs of timbres in an 
MDS solution do not exactly match the values given by the 
dissimilarity matrix and that stress is commonly given by MDS 
programs as an important measure of their average agreement. 
Stress generally decreases as the number of dimensions 
increases, but for visualization 2 or 3 dimensional solutions are 
preferred. Stress is useful for estimating the accuracy of an 
MDS solution. Unfortunately, in reading music several MDS 
papers, I could not find a single mention of the word stress, 
even though it is a very basic concept in the theory of MDS.) 
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Meanwhile, static tone solutions were correlated with two 
parameters measured from the sound signals, even/odd 
harmonic ratio (ratio of the average rms amplitude of the 
even harmonic amplitudes to that of the odd harmonics) and 
spectral irregularity. The dynamic tone solutions were 
correlated with those parameters plus two others: spectral 
flux (aka incoherence) and normalized spectral centroid 
variation (spectral centroid standard deviation divided by its 
average value).  All MDS solutions were rotated so that the 
best possible even/odd correlation aligned with the 
horizontal axis.  For the other parameters, best-fit straight 
lines of highest correlation to the various parameters were 
computed. 

Details of the corresponding SPSS and Matlab solutions 
were different. However, for the 2D static case instrument 
groupings were quite similar. The most obvious groupings 
were {recorder, clarinet, cello} and {trumpet, oboe, violin}. 
R2 correspondences with the even/odd and spectral 
irregularity parameters were 78-79% and 69-75%, 
respectively, for the two solutions. For the 2D dynamic case 
the correspondences were 71-69% for even/odd, 68-68% for 
spectral centroid variation, 56-53% for spectral incoherence, 
and 39-40% for spectral irregularity. Also, the spectral 
centroid variation and spectral incoherence straight lines 
were close together, indicating that these variables were 
highly correlated.   

For the 3D dynamic case the correspondences for 
even/odd, spectral centroid variation, spectral incoherence, 
and spectral irregularity were 82-68%, 83-82%, 53-83%, and 
82-71%, respectively, indicating rather strong disagreement 
between the SPSS and Matlab solutions as to the saliency of 
3 out of 4 of the parameters. Averaging over the two 
solutions gives 82.5% for spectral centroid variation, 76.5% 
for  spectral irregularity, 75% for even/odd, and 68% for 
spectral incoherence. Therefore, assuming that 3D solutions 
are best for the dynamic case because of their relatively low 
stress, it appears that spectral centroid variation is the 
parameter with the highest and most consistent saliency 
(beyond average centroid and attack/decay) for dynamic 
tones.  On the other hand, any of the four parameters 
corresponds as well as the others for at least one of the two 
solutions. Also, it is curious that the average correspondence 
for the four parameters is about the same for the SPSS 
solution (75%) as for the Matlab solution (76%), which 
means it would be difficult to conclude that one solution is 
better than the other, but they certainly are significantly 
different (average correspondence difference equals 14%). 

After making all of these computations one might ask: 
What is the advantage of using MDS? Why not just correlate 
with the original dissimilarity data?  Certainly MDS yields 
some pretty pictures, showing the relative positions of 
timbres relative to one another, but as the two 3D solutions 
for dynamic tones show, different solutions with the same 
stress can result in timbres in very different positions and 
can yield quite different correlations. At least with the 
original dissimilarity matrix there is only one set of data to 
correlate with, and it has no stress. 

 
2.3 Timbre transposition study (2008) 
 
This study was presented as a talk in 2008 [13].  The point 
of the study was to explore synthesis using a small set of 
time-variable control parameters and a family of spectral 
envelopes [10] [14], which represent a particular instrument, 
but then switch the spectral envelope family to a different 
instrument and see what happens.  Either the spectral 
envelopes will dominate, or the temporal data will dominate, 

or a hybrid instrument that shares characteristics will be 
produced. The instrument supplying the time-varying 
parameters is called the source instrument and the one 
supplying the spectral envelope family is called the target 
instrument. 

In an earlier project it was discovered that using the time-
varying parameters Arms(t), f0(t), and fc(t) (i.e., rms amplitude, 
fundamental frequency, and spectral centroid), combined with a 
spectral envelope family based on spectral centroid clustering, 
could produce trumpet tones that were quite realistic.  The 
spectral envelope family was derived from a training set of 
trumpet tones that covered a wide gamut of pitches and 
dynamics (i.e., intensity levels).  Every frame of every tone was 
analyzed (using the pitch-synchronous analyzer) and sorted into 
different “bins” based on ranges of centroid values, 0-200, 200-
400, etc.  The spectra in each bin were normalized and then 
sorted into critical bands, and finally the amplitudes within each 
band were averaged to give a single value that represents the 
band amplitude for that bin.  These amplitudes as a function of 
the band center frequencies formed a spectral envelope, and the 
collection of spectral envelopes for the various centroid ranges 
formed a family of spectral envelopes for the trumpet. 

Synthesis was done by first deriving representative time-
varying parameters Arms(t), f0(t), and fc(t) from a trumpet solo 
recording. fc(t) was used to compute the instantaneous spectral 
envelope by interpolation from the spectral envelope family, 
and harmonic amplitudes were obtained from the spectral 
envelope by sampling it at frequencies k f0(t), where k is the 
harmonic number.  These amplitudes can be easily adjusted to 
match the total amplitude Arms(t).  Then the sound is synthesized 
using additive synthesis.  A demonstration of this method using 
a restricted parametric model for the temporal variations is 
given on this author’s website [15]. This includes the addition of 
low frequency noise microvariations to the pitch and amplitude 
controls to make the synthesis sound more realistic.  

There is a question of whether the same family of spectral 
envelopes is adequate for all pitches (F0’s) or whether the 
family has to change as a function of F0 .  It seems to be the 
case (but not proven) that single families are adequate for brass 
instruments but perhaps not for woodwinds or strings.  
However, with the abundance of memory available in 
computers these days, it is entirely reasonable to compute and 
store a different family for each F0. Thus, spectral envelope 
becomes a function of both spectral centroid (fc ) and pitch (f0). 

It is fairly obvious that there needs to be a match between the 
source instrument and the target instrument in terms of the 
ranges of pitches and centroids. Thus, if the source and target 
pitch ranges and centroid ranges don’t overlap sufficiently, 
timbre transposition won’t work. However, the control ranges 
coming from the source can be easily mapped to correspond to 
the best ranges for the target using simple linear equations. 

Findings for this study were informal. It appears that if the 
temporal data of the source instrument is similar to that of the 
target instrument, the result will likely be identified as the target 
instrument.  On the other hand, if the target instrument’s 
spectral envelope family is similar to that of the source, the 
temporal information of the source may dominate and the result 
may still be identified as the source instrument. We have found 
this to be true if the source is a bassoon playing a series of low-
pitched short-duration notes is the source and a horn is the 
target. In between these cases are cases where neither the 
temporal information or spectral data are similar for the two 
instruments, so a true hybrid is produced. If horn is the source 
and clarinet is the target, we have a situation where the resulting 
hybrid sound can be recognized as a horn in terms its temporal 
envelopes but as a clarinet in terms of its unique spectrum with 
emphasis on odd harmonics.  
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Gradual morphing or interpolations between the 
instruments could be produced by cross-fading the temporal 
controls or the spectral envelopes or both. We actually 
haven’t tried this yet, but there is no reason why the method 
shouldn’t produce interesting results. 

Another possibility to investigate is the addition  of 
additional external controls designed to modify parameters 
such as those shown to be salient in the 1999 and 2006 
timbre studies discussed above. 

3.  REMARKS AND CONCLUSIONS 
 
The 1999 timbre study, which used parameter simplification 
and discrimination, indicated that spectral irregularity and 
spectral flux were more important than amplitude and 
frequency microvariations and inharmonicity. However, this 
author would take that result with a grain of salt because it is 
well known that temporal details and inharmonicity are 
important for instrument recognition and for warmth and 
realism.  

The 2006 dissimilarity study, which used 
multidimensional scaling to summarize relative perceptual 
distances between instrument timbres, yielded some 
interesting results and raised some nontrivial issues. One 
issue was the unexpected importance of the concept of stress 
(see above). Another was the usefulness of rotation for 
comparing solutions using different MDS programs. Still 
another was that solutions from different MDS programs can 
be quite different, although for the same number of 
dimensions their stresses tend to be in approximate 
agreement. Still another, was that best-fit straight lines that 
don’t normally correspond to dimensional axis lines can be 
used to maximize R2 correspondence. Finally, different MDS 
programs can yield different correlations with acoustic 
parameters, making exact conclusions about the saliency of 
these parameters problemmatic. Nonetheless, our 
conclusions from the MDS solutions can be summarized 
thusly:  For static tones (those without flux) for two different 
2D solutions with stresses of 12%, even/odd harmonic ratio 
correlated quite high (78-79%) and better than spectral 
irregularity (69-75%).  For dynamic tones (those with flux) 
for two different 2D solutions with stresses of 15 and 17%, 
even/odd correlated best (69-71%), followed by spectral 
centroid variation, spectral flux, and spectral irregularity.  
With the 3D solution for these tones, the stresses dropped to 
9.5% and some correlations increased 82-83%, but there was 
very significant disagreement between the solutions, except 
for spectral centroid variation (both solutions close to 82%). 

The 2008 timbre transposition study showed that 
combining some time-variant parameters with fixed spectral 
envelopes can not only allow the formation of a compact 
resynthesis model for a given instrument, but it can also 
serve as a method for applying the temporal characteristics 
of one instrument to the spectral characteristics of another. 
In some cases the resulting sounds demonstrate one of the 
two characteristics dominating the other. When the 
differences between the corresponding characteristics of the 
two instruments are both pronounced, a true hybrid is 
generally produced, where the temporal (articulatory) 
characteristic can be recognized as coming from one 
instrument and the spectral (tone color) characteristic as 
coming from the other.  
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