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ABSTRACT 

 
Source/filter models are frequently used to model sound 

production of the vocal apparatus and musical instruments. 
Beginning in 1968, in an effort to measure a filter 
characteristic (aka transmission response) of a trombone 
while it is being played by an expert musician, sound 
pressure waveforms from the mouthpiece and the bell output 
were recorded in an anechoic room and then subjected to 
harmonic spectrum analysis. Output/input ratios of the 
harmonic amplitudes plotted vs. harmonic frequency then 
became points on the trombone’s filter characteristic. The 
first such recordings were made on analog 1/4 inch stereo 
magnetic tape. Recently digital recordings of trombone 
mouthpiece and anechoic output signals were made that 
provide a more accurate measurement of the trombone filter 
characteristic. Results show that the equivalent filter is a 
high-pass type with a cutoff frequency around 1000 Hz. 
Whereas the characteristic below cutoff is quite stable, 
above cutoff it is extremely variable, depending on level. In 
addition, measurements made using a swept-sine-wave 
system verify the high-pass characteristic, but they also 
show a series of resonances whose minima correspond to the 
harmonic frequencies under performance conditions. For 
frequencies below cutoff the two types of measurements 
correspond well, but above cutoff there is a considerable 
difference. The general effect is that output harmonics above 
cutoff are greater than would be expected from linear filter 
theory, and this effect becomes stronger as performance 
dynamic increases. This nonlinear effect was verified by 
theory and measurements in the 1990’s [1] and early 2000’s 
[2] which showed that nonlinear propagation takes place in 
the trombone causing a wave steepening effect at high 
amplitudes, thus increasing the strengths of the upper 
harmonics. 

1.  INTRODUCTION 
While publications showing input impedance functions of 
frequency for wind instruments are quite common (e.g., [3] 
[4]), there have been very few publications showing pressure 
transfer functions (aka transmission responses). An 
exception is by Elliott et al. [5], who measured both input 
impedance and transfer functions for a trumpet and a 
trombone. They concluded that, despite the exceedingly high 
pressure levels that can occur in the trombone mouthpiece 
(greater than 165 dB SPL), “the magnitudes of the 
(nonlinear) effects are small compared to the overall, linear 
behavior of the instrument under normal playing 
conditions”.  This already had been discussed by Backus and 
Hundley [6], who concluded that brass systems are linear 
and that harmonics were generated in the mouthpiece due to 
a nonlinear variation of the slit resistance of the vibrating 
lips. 

Meanwhile, in 1968 as part of a project to determine a 
source/filter model for a trombone, I measured the pressure 
transfer function under performance conditions using 4 

different trombonists in an anechoic chamber at the University 
of Illinois. The idea was to record the mouthpiece and output 
pressures for tones performed at various pitches and dynamics 
on separate tracks of an analog tape and then submit them to 
harmonic analysis. Then, the transfer functions can be estimated 
by taking ratios between the amplitudes of the corresponding 
harmonics of the output and input. Thus, for each harmonic k 
and fundamental frequency f1, we can define 
 
                        T(kf1) = Pout(kf1)/Pin(kf1),                     (1) 

 
which gives the transfer function T(f) in terms of the input 
pressure Pin and the output pressure Pout sampled at frequencies 
kf1 .  Assuming a linear system and constant f1, T(f) should be 
independent of dynamic level. However, our measurements, 
reported in 1969 and 1980, were showing otherwise [7] [8]. 
 
1.1 Swept sine measurements 
 

In 1972 I made swept-sine measurements of T(f) in the U of I 
anechoic chamber for a Holten tenor trombone with microphone 
positioned 2 m from the bell. The results are shown in Fig. 1.  
 

 
Figure 1. Tenor trombone pressure transfer function (closed position). Four 
different cases for trombone output pressure measured: A- on-axis; B- on-
axis with mic rotated 45°; C- 45° off-axis; D- 90° off-axis. 
 

In 1973 I visited Arthur Benade at Case Institute in Cleveland 
and together we performed a simultaneous measurement of the 
transfer and the input impedance functions of my Conn 80A Bb 
cornet, using the swept-sine/chart recorder method. The graphs, 
shown in Fig. 2, clearly demonstrate that the local minima of the 
transfer function curve correspond to the local maxima of the 
input impedance curve (given by Zin(f) = Pin(f)/Uin(f), where Uin 
is the mouthpiece particle velocity). It is well known that the 
local maxima of Zin(f) correspond to the performance 
frequencies of the instrument, and therefore these frequencies 
correspond to the local minima of the transfer function. 

A comparison of swept-sine and the performance-condition 
transfer function results based on the 1968 recordings was given 
at two subsequent talks [9] [10]. However, there was always a 
little doubt about the accuracy of the performance-condition 
curves because analog tape has a limited signal-to-noise ratio 
(approx. 55 dB) as well as significant distortion, so that accurate 
calculation of the FFT ratio between output and input when the 
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upper harmonics of the input are weak (especially for the pp 
case) could be compromised. 

 

 
Figure 2. Simultaneous measurement of the transfer function (upper 
curve) and the input impedance (lower curve) for a Bb cornet (open 
valves).  Mic positioned very close to bell. 
 

Therefore, in 2000 I made new direct-to-digital stereo 
recordings of the mouthpiece and output pressure of a 
trombone played by Jay Bulen in the University of Iowa 
anechoic chamber (the U. of Illinois chamber was 
unfortunately decommisioned in the early 1980s). This 
allowed much more accurate calculations of performance-
condition transfer functions. Fig. 3 shows a block diagram of 
the measurement system. 

 

 
Figure 3. System for measurement of transfer function under 
performance conditions. A stereo file is stored on the computer with 
the mouthpiece pressure signal pin(t) as the left channel and output 
signal pout(t) as the right channel. 

2. RESULTS 
 
2.1  Calculation of T(f) under performance conditions 
 
The trombone mouthpiece (input) and on-axis far-field 
(output) signals (recorded in 2000) were copied to separate 
monaural files, and a “phase vocoder” program [11] was 
used to perform harmonic analysis on the signals. The 
amplitudes of Pin(fk) and Pout(fk), where fk = kf1 is the 
harmonic frequency and f1 = fundamental frequency, were 
averaged over 2 seconds within the durations of the sounds 
before computing the transfer function ratio T(fk) = Pout(fk)/ 
Pin(fk),. 

Graphs of Pin(fk), Pout(fk), and T(fk), where f1 = 58 Hz for 
the case pitch Bb

1 are shown (converted into decibels1) in 
Figs. 4 – 6 for dynamics pp, mf, and ff, respectively. (Note 
that the T(f) curves are shown continuous, but this does not 
imply anything about the filter characteristics between the 
harmonics as are indicated by the swept-sine measurements.)  

 

 
Figure 4.  Trombone mouthpiece spectrum (upper left), output spectrum 
(upper right), and transfer function (lower) for pitch Bb

1 and dynamic pp. 

 

 
Figure 5.  Trombone mouthpiece spectrum (upper left), output spectrum 
(upper right), and transfer function (lower) for pitch Bb

1 and dynamic mf. 
 

 
Figure 6.  Trombone mouthpiece spectrum (upper left), output spectrum (upper 
right), and transfer function (lower) for pitch Bb

1 and dynamic ff. 
 

Figs. 7–12 show a comparison of T(f) for the pp, mf, and ff 
cases for pitches Bb

1, Bb
2, F3, Bb

3, D4, and F4, respectively. Two 
things are obvious from the graphs: First, the curves are nearly 
the identical for f < 1000 Hz.  Second, for f > 1000 Hz the 
curves are quite different. In general T(f) is greater as the 
dynamic level increases.  (Note: vertical scales are in decibels 
and horizontal scales are 0 to 5000 Hz.)  It is clear from the 
graphs that at f = 5000 Hz the separation between the pp and ff 
cases is on the order of 30 dB.  
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Figure 7.  Bb

1 trombone transfer functions compared:  
pp (dotted lower), mf (dashed middle), ff (solid upper). 
 

 
Figure 8.  Bb

2 trombone transfer functions compared:  
pp (dotted lower), mf (dashed middle), ff (solid upper). 

 
Figure 9.  F3 trombone transfer functions compared:  
pp (dotted lower), mf (dashed middle), ff (solid upper). 

 
Figure 10.  Bb

3 trombone transfer functions compared:  
pp (dotted lower), mf (dashed middle), ff (solid upper). 
 

 
Figure 11.  D4 trombone transfer functions compared:  
pp (dotted lower), mf (dashed middle), ff (solid upper). 

 
Figure 12.  F4 trombone transfer functions compared:  
pp (dotted lower), mf (dashed middle), ff (solid upper).  
 
 
2.2  Relationship between T(f) and Zin(f) 
 
Assuming a lossless system, we can conclude that output power 
is equal to input power, i.e., Win = Wout .  For the input in the 
frequency domain we have 
 

       
Win ( f ) = Re Pin ( f )Uin ( f ){ } = Re Pin

2
( f ) / Zin ( f ){ }

          = Pin
2
( f )Re

1

Zin ( f )

!
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#

$
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&

          (2) 

 
where Uin(f) is the input particle velocity in the frequency 
domain. Note that without loss of generality, under the 
assumption that Pin(f) is real, we can move the real part inside 
the brackets in the last term to affect only the 1/Zin(f) term. 
 
The output power is the average output intensity Iave  on a 
sphere of radius r at which this intensity is measured. Thus, the 
total output power is  

             Wout ( f ) = 4!r
2
Iave( f ) = 4!r

2 Pout
2
( f )

D( f )Zo

,                 (4) 

where D(f) is the directivity index, Zo is the characteristic 
impedance of air, and Pout is on-axis pressure output.  Equating 
the input and output powers and solving for T(f) = Pout/Pin gives 
 

             
T ( f ) =
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Pin ( f )
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Further, it is approximately true that input impedance functions 
are real at their local maxima and minima (as indicated by the 
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zero phase values in [5]). Since the local maxima correspond 
to the performance frequencies, we can state that  
 
                         

 

T (kf
1
) !

ZoD(kf1)

4!r
2
Zin (kf1)

.
                        (6) 

 
So we see a plausible theoretical explanation of an important 
aspect of Fig. 2, namely that local maxima and minima of 
the transfer and the input impedance functions are 
interchanged.  This is most important for frequencies below 
cutoff, i.e.,  f < fcut, where fcut ≅ 200/d and d is the bell 
diameter [12]. For a trombone, the bell diameter is 
approximately 0.2 m, and for a trumpet it is approximately 
0.1 m, so the cutoff frequencies are about 1000 Hz and 2000 
Hz, respectively. We don’t have to be concerned about  D(f) 
for f < fcut  because it is approximately unity [13].  Above 
cutoff, however, D increases proportional to f2 (actually, D ≅ 
(.01d2)f2). Meanwhile, Zin is dropping from its maximum 
down to a relatively constant Zo (see Fig. 2). So, we would 
expect 
                       

 

T ( f ) ! 0.0027
d

r
f ,   f > fcut

 .                   (7) 

However, the swept-sine measurements don’t verify either 
Eq. 6 for f  < fcut or Eq. 7 for f  > fcut .  Apparently there are 
internal losses that compensate to produce the actual linear 
measured result for f  < fcut . Elliott et al. [5] calculate losses 
as great as 40 dB for low frequencies and near zero above 
cutoff, but the question of why T(f) does not increase 
linearly with frequency for  f  > fcut  remains a puzzle. 
 
2.3 Alignment between swept-sine and performance-
condition measurements for f  < fcut  
 
If we take transfer function values calculated from 
performance-condition measurements for the trombone and 
superimpose them on the swept-sine data, how well do they 
agree? Table 1 shows the data alignment between the two 
measurements for f < 1000 Hz. 
 
The results are very close considering that the trombones 
were different – a Holton TR602 tenor trombone with a 6 ½ 
AL mouthpiece was used for the swept-sine measurement of 
Fig. 1, whereas a Bach 42 B0 tenor trombone with a Stork 
5S mouthpiece was used for the most recent performance-
condition measurement.  Moreover, the measurements were 
done in different anechoic chambers 28 years apart. 
 

 
 
Table 1.  For each harmonic of a Bb

1 (58 Hz) mf  tone, decibel 
amplitudes (on a relative scale) for input pressure, output pressure, 
and output-minus-input are given in red (see Fig. 5).  Values sampled 
at the harmonic frequencies from Fig. 1 (upper curve) with 3 added are 
shown in green. The average magnitude error is approximately 2 dB. 
 
1  I.e., T(f)dB = 20 log10(T(f)). 
 

3. CONCLUSIONS 
 
Swept-sine measurements of brass pressure transfer functions 
show a high-pass characteristic with resonance minima 
corresponding to the harmonic performance frequencies. 
Measurements of the transfer function under performance 
conditions closely follow the swept-sine response for harmonics 
below the cutoff frequency but deviate strongly above cutoff. 
For example, harmonics above cutoff are roughly 10 to 30 dB 
stronger for tones played ff than for tones played pp. A 
theoretical derivation assuming a linear system, using power 
conservation, indicates that the transfer function should be 
inversely proportional to the square root of the impedance. 
Below cutoff, this relationship is qualitatively verified by swept-
sine measurement. However, the detailed relationship is not 
verified, and the lack of agreement for frequencies above cutoff 
in the linear case is perplexing. 
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