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ABSTRACT

The effect of vibrating walls on the radiated sound of wind in-
struments has often been claimed to be audible by musicians
and instrument makers. Many scientists resisted such ideas be-
cause comprehensible explanations have been missing. In this
paper a theory based on forced vibrations is presented which
predicts changes in input impedance and transfer function which
are qualitatively comparable and in the same order of magni-
tude as those having been observed in experiments[?]. Sound
pressure induced axisymmetric wall displacements are causing
pressure fluctuations due to the oscillating volume. These influ-
ences have been added to a typical transmission line model[?]
propagating complex pairs of sound pressure and flow through
a sequence of cylindrical elements represented by their trans-
mission matrices.

1. MODELING WALL VIBRATIONS

Elastic strain of the metal wall, which is proportional to the os-
cillating sound pressure inside the instrument, could provide
an explanation for the observed shifts in input impedance and
changes in the transfer functions. A first order numerical anal-
ysis of such interactions reveals differences in the impedance
and transfer function that are of the right order of magnitude
and qualitatively similar to the experimental observations.

1.1. Static Case

We begin by calculating the static (purely proportional) case,
where the change in diameter of a cylindrical pipe is directly
proportional to the applied pressure. In the standard transmission-
line model, the instrument is divided into a series of short seg-
ments as shown in Fig. ??. Since the wall thickness is small
compared with the tube radius, there will not be significant
stress in radial direction. Stress in axial direction associated
with Poisson’s ratio and by forces related to pressure gradients
are also neglected. Since the pressure distribution along the in-
strument axis is smooth and never discontinuous, these assump-
tions also apply to the dynamic case considered below.

The balance of forces inside any short segment of length
∆x of a pressurized pipe with internal pressure p, radius r
and wall thickness t, requires the pressure induced force Fσ =
p (2 r∆x) on any cross-section to be compensated by an equal
total force in the walls. The hoop stress σ due to the internal air
pressure p can therefore be calculated by

σ =
p r

t
. (1)

Fig 1 : Wall forces caused by internal pressure

From the axially symmetric hoop stress σ the relative change
of circumference ε is given by

ε =
σ

E
, (2)

where E represents the Young’s modulus of the material, which
is approximately 100-125 GPa for brass. The relative change in
the circumference leads to a larger cross sectional area of the
pipe when an internal positive pressure is present. The change
in pipe radius ∆r over the causative pressure p is then given by

∆r

p
=

r2

E t
. (3)

A quasi-static view, considering frequencies small enough
to neglect mass inertia of the wall as well as its internal fric-
tion against strain, allows one to define the change in the pipe
radius at the maximum positive instantaneous pressure p̂ as the
amplitude of the oscillations in the wall displacement ŝ,

ŝ = p̂
r2

E t
. (4)

1.2. Flaring Sections

If the tube is not completely cylindrical but instead flares, as
in the bell region of most brass instruments, the situation must
be reconsidered. The air pressure displaces the wall in normal
direction. Since we are interested in the cross-sectional area of a
conical slice, which is described in a coordinate system fixed to
the air column, the displacement normal to the wall sp caused
by the pressure force fp ≈ p 2 r π ∆x

cos(φ)
is translated into a

radial shift sr =
sp

cos(φ)
.

The displacement sp will also be larger than that found in
the purely cylindrical case because the direction of the displace-
ment is no longer radial, so less circumferential strain is re-
quired for the same amount of displacement. This can be taken
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into account by another factor of cos(φ), which reduces the ef-
fective Young’s modulus in that case accordingly.

Eq. ?? can be therefore be rewritten as

ŝ ≈ p̂
r2

E t cos(φ)3
. (5)

From the amplitude of the wall displacement we can derive the
wall velocity v̂ = ω ŝ and the parasitic flow ûL = v̂ 2 r π∆x,
which is lost into the vibrating wall.

1.3. Dynamic Case

Any damped mechanical system of first order which is driven
by a sinusoidally oscillating external force with amplitude F̂
and frequency ω can be described by

k s(t) + γ s′(t) +ms′′(t) = F̂ eiω t, (6)

where k is the effective spring constant, γ is a damping coeffi-
cient and s(t) is the displacement of the effective mass m. The
velocity and acceleration are denoted as usual by s′ = ds

dt
and

s′′ = d2s
dt2

respectively.
It is useful to describe the motion in terms of the resonance

frequency ω0 = 2π f0, the quality factor Q, and the quasi-static
displacement amplitude ŝ at very low frequencies. The first two
of these quantities can be measured, while ŝ can be calculated
using eq. ?? or ??.

With these quantities we can formulate Eq. ?? as

s′′

ω0
2
+

s′

Qω0
+ s = ŝ eiω t, (7)

thus defining the correspondences

m =
k

ω0
2
, (8)

γ =
k

Qω0
, (9)

and
F̂ = k ŝ. (10)

1.3.1. Amplitude and Phase of Wall Vibrations

The solution for the displacement s is again a harmonically os-
cillating function s(t) = Â(ω) eiω t with an amplitude Â(ω),
which can be obtained by substituting s(t) and its derivatives
s′(t) and s′′(t) into Eq. ??. Doing so results in

Â(ω) = ŝ
ω0

2

ω0
2 + iω ω0

Q
− ω2

. (11)

The magnitude of the displacement
∣∣∣Â(ω)

∣∣∣ is then given by

∣∣∣Â(ω)
∣∣∣ = ŝ

√
ω0

4

ω4 + (Q−2 − 2) ω2 ω0
2 + ω0

4
, (12)

with the phase being

arg(Â(ω)) = arctan
−ω ω0

Q (ω2
0 − ω2)

. (13)

1.3.2. Critical Frequency of Strain Oscillations

If we concentrate the whole mass of one hoop section and intro-
duce an effective spring constant k for the radial displacement s,

we can calculate the critical frequency according to ω0 =
√

k
m

.
For a conical hoop segment of infinitesimal width ∆x the

total mass is given by

m = 2 r π
∆x

cos(φ)
t ρ, (14)

with ρ being the mass density of the wall material. Using the
definition of the spring constant, k = F

s
, and substituting the

total radial force F = p 2 r π∆x, and s given by eq. ?? results
in

k =
2π∆xE t cos(φ)3

r
. (15)

This leads to an expression for the critical frequency,

ω0 =

√
E cos(φ)4

r2 ρ
=

cos(φ)2

r

√
E

ρ
. (16)

Note that the critical frequency does not depend on the wall
thickness t, but it depends strongly on the flare angle φ and the
radius r.

The radius and flare angle dependencies indicate that there
is not one single critical frequency, but a spatially distributed
range of critical frequencies. That is, there are regional reso-
nances that are excited at different positions as the driving fre-
quency of the air column changes. Thus the wide range of bore
radii and flare angles in the bell of typical brass wind instru-
ments causes strain oscillation resonances over a wide range of
frequencies, but local to different parts of the bell.

1.3.3. Thermodynamic Pressure Modulation due to Volume
Oscillations

The ideal gas equation p(t)V (t) = RT n(t) relates the num-
ber of moles of gas n(t), the volume V (t) and the pressure p(t)
at constant temperature T at any time t (R being the universal
gas constant). The time varying quantities p(t), V (t) and n(t)
are usually derived from constant equilibrium conditions p0, V0

and n0 and small harmonically oscillating magnitudes p̂ eiω t,
V̂ eiω t and n̂ eiω t. The value of n̂ can be calculated from the
ideal gas equation at constant volume V0 and constant tempera-
ture T by n̂ = V0 p̂

R T
.

Superimposing such volume oscillations with an amplitude
V̂ , which has a phase shift of ϑ with respect to the pressure in
the air column, the gas equation becomes

(p0+p+(t)) (V0+V̂ eiω t eiϑ) = RT (n0+
V0 p̂

R T
eiω t). (17)

Neglecting second order terms and solving for the effective time
varying pressure p+(t) yields

p+(t) = p̂ eiω t − p0
V0

V̂ eiϑ eiω t. (18)

As expected, the effective pressure is composed of the oscillat-
ing pressure, which originally modulated n(t), and an oscillat-
ing but phase-shifted additional pressure, which is due to the
oscillating volume.

This extra pressure amplitude p̂V , which is caused by the
wall vibrations, is given by

p̂V =
p0
V0

V̂ eiϑ =
p0

r2 π∆x
(2 r π∆x ŝ) eiϑ =

2 p0
r

ŝ eiϑ.

(19)
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1.4. Impedance and Pressure Transfer Function

In one-dimensional transmission line theory complex wave quan-
tities p and u are propagated through sections of arbitrary acous-
tical ducts according to

p1 = a p2 + b u2

u1 = c p2 + d u2, (20)

a, b, c, d being complex frequency-dependent elements of the
propagation matrix A which for lossless cylindrical elements is
given by[?]

A =

(
a b
c d

)
=

(
cos(k L) iR0 sin(k L)
i

R0
sin(k L) cos(k L)

)
,

(21)
with L being the length of the cylindrical section, the wave
number k = ω

v
and the characteristic impedance R0 = ρa v

S
.

As usual, v is the speed of sound, ρa is the density of air and
ω is the angular frequency. The proportionality of c and the in-
verse proportionality of b to the cross-sectional area S also hold
in the lossy as well as in the conical case.

If the resulting pressure p1 is decreased by the amount pV =
kV p1 caused by the oscillating volume, then a corrected left
side pressure p∗1 is obtained. This correction results from a cor-
rected matrix element b∗ because the matrix element b is pro-
portional to the characteristic impedance R0 and therefore in-
verse proportional to the effective cross-sectional area. The ma-
trix element c is also proportional to the effective cross-sectional
area and needs to be adjusted accordingly. These considerations
can be formulated according to

p∗1 = p1 (1− kp − kV )

p∗1 = a p2 + b∗ u2

c∗

c
=

b

b∗
. (22)

Note that all wave quantities pi and ui as well as the coef-
ficients a,b,c,d,kp and kV are complex and therefore represent
an amplitude or scale factor as well as a relative phase or phase
shift. Using eq. ?? and the fact that Z2 = p2

u2
, we obtain modi-

fied matrix elements

b∗ = b (1− kp − kV )− aZ2 (kp + kV )

c∗ = c
b

b∗
, (23)

which now take wall vibration effects into account. The acous-
tic impedance therefore propagates through ducts with vibrating
walls according to

Z1 =
b∗ + aZ2

d+ c∗ Z2
, (24)

which allows one to calculate the effective propagation coef-
ficients b∗ and c∗ during accumulation of all propagation ma-
trices when the accumulation process is started at the known
radiation impedance at the open mouth of the bell. These mod-
ifications due to wall vibration effects can be interpreted as the
static cross-sectional area of an element being slightly increased
when a non-rigid wall yields to the air column pressure.

1.5. Theoretical Results

A one-dimensional transmission line simulation using lossy cylin-
drical and conical elements as proposed by Mapes-Riordan, [?]
implemented in the Brass Instrument Analysis System (BIAS),
was used to calculate input impedance and mouthpiece-to-bell
pressure transfer spectra of the trumpet that was used in the ex-
periments.

Fig 2 : (a) Predicted transfer function of trumpet with walls
free to vibrate (black, solid) and with the walls heavily damped
(red, dashed).
(b) Difference in the theoretical transfer functions.
(c) Predicted input impedance of trumpet with walls free to
vibrate (black, solid) and with the vibrations heavily damped
(red dashed).
(d) Difference in the theoretical input impedance.

Fig ??(a) shows the predicted pressure transfer spectrum for
the case with the vibrations damped and with no damping. The
difference between the two cases is shown in Fig. ??(b). The
magnitudes of the differences between the two cases predicted
by the theory are quite similar to those observed experimen-
tally, as is the qualitative shape of the graph. The impedance
spectrum predicted by the model is shown in Fig. ??(c). As
is the case with the transfer function, the predicted impedance
difference between the damped and free case is similar in mag-
nitude, and a graph of the difference is qualitatively similar in
shape to the experimentally derived values.

The similarity between the theoretical and experimental re-
sults indicate that a significant portion of the acoustical effects
attributable to bell motion during play can be accounted for by
assuming an axisymmetric motion of the wall that is caused by
the internal air pressure. While these breathing modes occur
throughout the instrument, their effect is most pronounced when
they occur in the bell section.
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