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1 Abstract
The effect of vibrating walls on the radiated sound of wind
instruments has often been claimed to be audible by mu-
sicians and instrument makers. Many scientists resisted
such ideas because comprehensible explanations have been
missing. In this paper a theory based on forced vibrations is
presented which predicts changes in input impedance and
transfer function which are qualitatively comparable and in
the same order of magnitude as those having been observed
in experiments[3]. Sound pressure induced axisymmetric
wall displacements are causing pressure fluctuations due to
the oscillating volume. These influences have been added
to a typical transmission line model[6] propagating com-
plex pairs of sound pressure and flow through a sequence
of cylindrical elements represented by their transmission
matrices.

2 Modeling wall vibrations
Elastic strain of the metal wall, which is proportional to
the oscillating sound pressure inside the instrument, could
provide an explanation for the observed shifts in input
impedance and changes in the transfer functions. A first
order numerical analysis of such interactions reveals dif-
ferences in the impedance and transfer function that are of
the right order of magnitude and qualitatively similar to the
experimental observations.

2.1 Static Case
We begin by calculating the static (purely proportional)
case, where the change in diameter of a cylindrical pipe
is directly proportional to the applied pressure. In the
standard transmission-line model, the instrument is divided
into a series of short segments as shown in Fig. 1. Since the
wall thickness is small compared with the tube radius, there
will not be significant stress in radial direction. Stress in
axial direction associated with Poisson’s ratio and by forces
related to pressure gradients are also neglected. Since the
pressure distribution along the instrument axis is smooth
and never discontinuous, these assumptions also apply to
the dynamic case considered below.
Fig 1 : Wall forces caused by internal pressure

The balance of forces inside any short segment of length
∆x of a pressurized pipe with internal pressure p, radius
r and wall thickness t, requires the pressure induced force
Fσ = p (2 r∆x) on any cross-section to be compensated
by an equal total force in the walls. The hoop stress σ due
to the internal air pressure p can therefore be calculated by

σ =
p r

t
. (1)

From the axially symmetric hoop stress σ the relative
change of circumference ε is given by

ε =
σ

E
, (2)

where E represents the Young’s modulus of the material,
which is approximately 100-125 GPa for brass. The rela-
tive change in the circumference leads to a larger cross sec-
tional area of the pipe when an internal positive pressure is
present. The change in pipe radius ∆r over the causative
pressure p is then given by

∆r

p
=

r2

E t
. (3)

A quasi-static view, considering frequencies small
enough to neglect mass inertia of the wall as well as its
internal friction against strain, allows one to define the
change in the pipe radius at the maximum positive instan-
taneous pressure p̂ as the amplitude of the oscillations in
the wall displacement ŝ,

ŝ = p̂
r2

E t
. (4)

2.2 Flaring Sections
If the tube is not completely cylindrical but instead flares,
as in the bell region of most brass instruments, the situa-
tion must be reconsidered. The air pressure displaces the
wall in normal direction. Since we are interested in the
cross-sectional area of a conical slice, which is described
in a coordinate system fixed to the air column, the dis-
placement normal to the wall sp caused by the pressure

force fp ≈ p 2 r π ∆x
cos(φ)

is translated into a radial shift

sr =
sp

cos(φ)
.

The displacement sp will also be larger than that found in
the purely cylindrical case because the direction of the dis-
placement is no longer radial, so less circumferential strain
is required for the same amount of displacement. This can
be taken into account by another factor of cos(φ), which
reduces the effective Young’s modulus in that case accord-
ingly.

Eq. 4 can be therefore be rewritten as

ŝ ≈ p̂
r2

E t cos(φ)3
. (5)

From the amplitude of the wall displacement we can de-
rive the wall velocity v̂ = ω ŝ and the parasitic flow
ûL = v̂ 2 r π∆x, which is lost into the vibrating wall.

2.3 Dynamic Case
Any damped mechanical system of first order which is
driven by a sinusoidally oscillating external force with am-
plitude F̂ and frequency ω can be described by

k s(t) + γ s′(t) +ms′′(t) = F̂ eiω t, (6)

where k is the effective spring constant, γ is a damping co-
efficient and s(t) is the displacement of the effective mass
m. The velocity and acceleration are denoted as usual by
s′ = ds

dt and s′′ = d2s
dt2

respectively.
It is useful to describe the motion in terms of the reso-

nance frequency ω0 = 2π f0, the quality factor Q, and the
quasi-static displacement amplitude ŝ at very low frequen-
cies. The first two of these quantities can be measured,
while ŝ can be calculated using eq. 4 or 5.

With these quantities we can formulate Eq. 6 as

s′′

ω02
+

s′

Qω0
+ s = ŝ eiω t, (7)

thus defining the correspondences

m =
k

ω02
, (8)

γ =
k

Qω0
, (9)

and
F̂ = k ŝ. (10)

2.3.1 Amplitude and Phase of Wall Vibrations

The solution for the displacement s is again a harmonically
oscillating function s(t) = Â(ω) eiω t with an amplitude
Â(ω), which can be obtained by substituting s(t) and its
derivatives s′(t) and s′′(t) into Eq. 7. Doing so results in

Â(ω) = ŝ
ω0

2

ω02 + iω ω0
Q − ω2

. (11)

The magnitude of the displacement
∣∣∣Â(ω)∣∣∣ is then given by

∣∣∣Â(ω)∣∣∣ = ŝ

√
ω04

ω4 +
(
Q−2 − 2

)
ω2 ω02 + ω04

, (12)

with the phase being

arg(Â(ω)) = arctan
−ω ω0

Q
(
ω20 − ω2

). (13)

2.3.2 Critical Frequency of Strain Oscillations

If we concentrate the whole mass of one hoop section and
introduce an effective spring constant k for the radial dis-
placement s, we can calculate the critical frequency ac-

cording to ω0 =
√

k
m.

For a conical hoop segment of infinitesimal width ∆x the
total mass is given by

m = 2 r π
∆x

cos(φ)
t ρ, (14)

with ρ being the mass density of the wall material. Using
the definition of the spring constant, k = F

s , and substitut-
ing the total radial force F = p 2 r π∆x, and s given by eq.
5 results in

k =
2π∆xE t cos(φ)3

r
. (15)

This leads to an expression for the critical frequency,

ω0 =

√
E cos(φ)4

r2 ρ
=

cos(φ)2

r

√
E

ρ
. (16)

Note that the critical frequency does not depend on the wall
thickness t, but it depends strongly on the flare angle φ and
the radius r.

The radius and flare angle dependencies indicate that
there is not one single critical frequency, but a spatially
distributed range of critical frequencies. That is, there are
regional resonances that are excited at different positions
as the driving frequency of the air column changes. Thus
the wide range of bore radii and flare angles in the bell
of typical brass wind instruments causes strain oscillation
resonances over a wide range of frequencies, but local to
different parts of the bell.

2.3.3 Thermodynamic Pressure Modulation due to
Volume Oscillations

The ideal gas equation p(t)V (t) = RT n(t) relates the
number of moles of gas n(t), the volume V (t) and the
pressure p(t) at constant temperature T at any time t (R
being the universal gas constant). The time varying quan-
tities p(t), V (t) and n(t) are usually derived from constant
equilibrium conditions p0, V0 and n0 and small harmon-
ically oscillating magnitudes p̂ eiω t, V̂ eiω t and n̂ eiω t.
The value of n̂ can be calculated from the ideal gas equa-
tion at constant volume V0 and constant temperature T by
n̂ = V0 p̂

R T .
Superimposing such volume oscillations with an ampli-

tude V̂ , which has a phase shift of ϑ with respect to the
pressure in the air column, the gas equation becomes

(p0+p+(t)) (V0+V̂ eiω t eiϑ) = RT (n0+
V0 p̂

R T
eiω t). (17)

Neglecting second order terms and solving for the effective
time varying pressure p+(t) yields

p+(t) = p̂ eiω t − p0
V0

V̂ eiϑ eiω t. (18)

As expected, the effective pressure is composed of the os-
cillating pressure, which originally modulated n(t), and an
oscillating but phase-shifted additional pressure, which is
due to the oscillating volume.

This extra pressure amplitude p̂V , which is caused by the
wall vibrations, is given by

p̂V =
p0
V0

V̂ eiϑ =
p0

r2 π∆x
(2 r π∆x ŝ) eiϑ =

2 p0
r

ŝ eiϑ.

(19)

2.4 Impedance and Pressure Transfer Func-
tion

In one-dimensional transmission line theory complex wave
quantities p and u are propagated through sections of arbi-
trary acoustical ducts according to

p1 = a p2 + b u2
u1 = c p2 + d u2, (20)

a, b, c, d being complex frequency-dependent elements of
the propagation matrix A which for lossless cylindrical el-
ements is given by[6]

A =

(
a b
c d

)
=

(
cos(k L) iR0 sin(k L)
i
R0

sin(k L) cos(k L)

)
, (21)

with L being the length of the cylindrical section, the wave
number k = ω

v and the characteristic impedance R0 =
ρa v
S .

As usual, v is the speed of sound, ρa is the density of air
and ω is the angular frequency. The proportionality of c
and the inverse proportionality of b to the cross-sectional
area S also hold in the lossy as well as in the conical case.

If the resulting pressure p1 is decreased by the amount
pV = kV p1 caused by the oscillating volume, then a cor-
rected left side pressure p∗1 is obtained. This correction re-
sults from a corrected matrix element b∗ because the matrix
element b is proportional to the characteristic impedance
R0 and therefore inverse proportional to the effective cross-
sectional area. The matrix element c is also proportional to
the effective cross-sectional area and needs to be adjusted
accordingly. These considerations can be formulated ac-
cording to

p∗1 = p1 (1− kp − kV )

p∗1 = a p2 + b∗ u2
c∗

c
=

b

b∗
. (22)

Note that all wave quantities pi and ui as well as the coef-
ficients a,b,c,d,kp and kV are complex and therefore repre-
sent an amplitude or scale factor as well as a relative phase
or phase shift. Using eq. 20 and the fact that Z2 = p2

u2
, we

obtain modified matrix elements

b∗ = b (1− kp − kV )− aZ2 (kp + kV )

c∗ = c
b

b∗
, (23)

which now take wall vibration effects into account. The
acoustic impedance therefore propagates through ducts
with vibrating walls according to

Z1 =
b∗ + aZ2

d + c∗Z2
, (24)

which allows one to calculate the effective propagation co-
efficients b∗ and c∗ during accumulation of all propagation
matrices when the accumulation process is started at the
known radiation impedance at the open mouth of the bell.
These modifications due to wall vibration effects can be
interpreted as the static cross-sectional area of an element
being slightly increased when a non-rigid wall yields to the
air column pressure.

2.5 Theoretical Results
A one-dimensional transmission line simulation using
lossy cylindrical and conical elements as proposed by
Mapes-Riordan, [6] implemented in the Brass Instrument
Analysis System (BIAS), was used to calculate input
impedance and mouthpiece-to-bell pressure transfer spec-
tra of the trumpet that was used in the experiments.
Fig 2 : (a) Predicted transfer function of trumpet with walls free to
vibrate (black, solid) and with the walls heavily damped (red, dashed).
(b) Difference in the theoretical transfer functions.
(c) Predicted input impedance of trumpet with walls free to vibrate
(black, solid) and with the vibrations heavily damped (red dashed).
(d) Difference in the theoretical input impedance.

Fig 2(a) shows the predicted pressure transfer spectrum
for the case with the vibrations damped and with no damp-
ing. The difference between the two cases is shown in Fig.
2(b). The magnitudes of the differences between the two
cases predicted by the theory are quite similar to those ob-
served experimentally, as is the qualitative shape of the
graph. The impedance spectrum predicted by the model
is shown in Fig. 2(c). As is the case with the transfer
function, the predicted impedance difference between the
damped and free case is similar in magnitude, and a graph
of the difference is qualitatively similar in shape to the ex-
perimentally derived values.

The similarity between the theoretical and experimental
results indicate that a significant portion of the acoustical
effects attributable to bell motion during play can be ac-
counted for by assuming an axisymmetric motion of the
wall that is caused by the internal air pressure. While these
breathing modes occur throughout the instrument, their ef-
fect is most pronounced when they occur in the bell section.
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